教师资源网

导航栏

×
你的位置: 教师资源网 >教案模板 >导航

人教版一元二次方程教案

时间:2024-10-24

人教版一元二次方程教案(汇总九篇)。

作为一名教学工作者,总归要编写教案,教案是备课向课堂教学转化的关节点。那么写教案需要注意哪些问题呢?以下是小编为大家整理的《一元二次方程》的优秀教案(通用9篇),仅供参考,大家一起来看看吧。

人教版一元二次方程教案 篇1

一、教学目标:

1、知识与能力:理解配方法,会利用配方法以一元二次式进行配方。通过对比、转化,总结得出配方法的一般过程,提高分析能力。通过对一元二次方程二次项系数是否为1的分类处理,锻炼学生的抽象概括能力。

2、过程与方法:会用配方法解简单的数学系数的一元二次方程。发现不同方程的转化方式,运用已有知识解决新问题。

3、情感态度价值观:通过配方法的探究活动,培养学生勇于探索的良好学习习惯。感觉数学的严谨性以及数学结论的确定性。

二、教学重难点:

1、重点---会利用配方法熟练解一元二次方程。

2、难点---对于二次项系数不为1的一元二次方程通过系数化1进行适当变形后再利用配方法求解。

三、教学过程

(一)活动1:提出问题

要使一块长方形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?设计意图:让学生在解决实际问题中学习一元二次方程的解法。

师生行为:教师引导学生回顾列方程解决实际问题的基本思路,学生讨论分析。

(二)活动2:温故知新

1、填上适当的数,使下列各式成立,并总结其中的规律。

(1)x+ 6x+ =(x +3 )

(2) x+8x+ =(x+ )

(3)x2-12x+ =(x- )2

(4) x2- 5x+ =(x- )2

(5)a2+2ab+ =(a+ )2

(6)a2-2ab+ =(a- )2

2、用直接开平方法解方程:x2+6x+9=2设计意图:第一题为口答题,复习完全平方公式,旨在引出配方法,培养学生探究的兴趣。

专心(三)活动2:自主学习

自学课本P31---P32思考下列问题:

1、仔细观察教材问题2,所列出的方程x2+6x-16=0利用直接开平方法能解吗?

2、怎样解方程x2+6x-16=0?看教材框图,能理解框图中的每一步吗?(同学之间可以交流、师生间也可交流。)

3、讨论:在框图中第二步为什么方程两边加9?加其它数行吗?

4、什么叫配方法?配方法的目的是什么?5.配方的关键是什么?交流与点拨:

重点在第2个问题,可以互相交流框图中的每一步,实际上也是第3个问题的讨论,教师这时对框图中重点步骤作讲解,特别是两边加9是配方的关键,使之配成完全平方式。利用a2±2ab+b2=(a±b)2。

注意:9=(),而6是方程一次项系数。所以得出配方的关键是方程两边加上一次项系数一半的平方,从而配成完全平方式。

设计意图:学生通过自学经历思考、讨论、分析的过程,最终形成把一个一元二次方程配成完全平方式形式来解方程的思想

(四)活动4:例题学习

例(教材P33例1)解下列方程:(1)x-8x+1=0 (2)2x+1=-3x (3)3x2-6x+4=0教师要选择例题书写解题过程,通过例题的学习让学生仔细体会用配方法解方程的一般步骤。

交流与点拨:用配方法解一元二次方程的一般步骤:

(1)将方程化成一般形式并把二次项系数化成1;(方程两边都除以二次项系数)

(2)移项,使方程左边只含有二次项和一次项,右边为常数项。

(3)配方,方程两边都加上一次项系数一半的平方。

(4)原方程变为( mx+n)2=p的形式。

(5)如果右边是非负数,就可用直接开平方法求取方程的解。设计意图:牢牢把握通过配方将原方程变为(mx+n)2=p的形式方法。

(五)课堂练习:

1.教材P34练习1(做在课本上,学生口答)2.教材P34练习2师生行为:对于第二题根据时间可以分两组完成,学生板演,教师点评。设计意图:通过练习加深学生用配方法解一元二次方程的方法。

四、归纳与小结:

1.理解配方法解方程的含义。

2.要熟练配方法的技巧,来解一元二次方程,

3.掌握配方法解一元二次方程的一般步骤,并注意每一步的易错点。 4.配方法解一元二次方程的解题思想:“降次”由二次降为一次。

五、布置作业

教材P42习题22.2第3题

---教后反思

通过本节课的学习,我发现:配方法不仅是解一元二次方程的方法之一,而且它还可作为其它许多数学问题的'一种研究思想,其发挥的作用和意义十分重要。从学生的学习情况来看,效果普遍良好,且已基本掌握了这种数学方法,从本节课的具体教学过程来分析,我有以下几点体会和认识。

1、学生对这块知识的理解很好,学生自己总结了配方法的具体步骤,即:

①化二次项系数为1;

②移常数项到方程右边;

③方程两边同时配上一次项系数一半的平方;

④化方程左边为完全平方式;

⑤(若方程右边为非负数)利用直接开平方法解得方程的根。理解起来也很容易,然后再加以练习巩固

2、教学方法上的几点体会:

①需要创造性地使用教材,可以根据学生的实际情况对教材内容进行适当调整。

②相信学生要为学生提供充分展示自己的机会本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,并且在此过程中教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学。

3、当然在这一块知识的教学过程中,学生也出现了个别错误,表现在:

①二次项系数没有化为1就盲目配方;

②不能给方程“两边”同时配方;

③配方之后,右边是0,结果方程根书写成x=﹡的形式(应为x1=x2=﹡);

④所给方程的未知字母有时不是x,而是y、z、a、m等,但个别粗心甚至细心的同学在结果写方程根时字母都变成了x。对于以上错误,我在最后的知识小结中,又重点强调了配方法的一般步骤,并说明其中关键的一步是第③步,必须依据等式的基本性质给方程两边同时加常数。

4、对于基础较差的少数学生我只要求认真理解并巩固“配方法”;对于基础较好的同学根据他们的课堂反应,我还在知识拓宽方面加以提示:因为完全平方式的值定是非负数,故若在说明某一多项式是否为非负数时,可采用配方法来证,这样对有些善于钻研思考的同学来说,在有关配方法的应用和探究方面,为之起到“抛砖引玉”的作用,也为后期部分知识的教学作了一定的铺垫。

5、在我本节课的教学当中,也有如下不妥之处:

①对不同层次的学生要求程度不适当;

②在提示和启发上有些过度;

③为学生提供的思考问题时间较少,导致部分学生对本节知识“囫囵吞枣”,而最终“消化不良”,在以后的课堂教学中,我会力争克服以上不足。

人教版一元二次方程教案 篇2

教学目标

知识技能:掌握应用方程解决实际问题的方法步骤,提高分析问题、解决问题的能力。

过程与方法:通过探索球积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义。

情感态度:鼓励学生自主探究,合作交流,养成自觉反思的良好习惯。

重点:把实际问题转化为数学问题,不仅会列方程求出问题的解,还会进行推理判断。

难点:把数学问题转化为数学问题。

关键:从积分表中找出等量关系。

教具:投影仪。

教法:探究、讨论、启发式教学。

教学过程

一、创设问题情境

用投影仪展示几张比赛场面及比分(学习是生活需要,引起学生兴趣)

二、引入课题

教师用投影仪展示课本106页中篮球联赛积分榜引导学生观察,思考:.

① 用式子表示总积分能与胜、负场数之间的数量关系;

②某队的胜场总分能等于它的负场总积分么?

学生充分思考、合作交流,然后教师引导学生分析。

师:要解决问题①必须求出胜一场积几分,负一场积几分,你能从积分榜中得到负一场积几分么?你选择哪一行最能说明负一场积几分?

生:从最下面一行可以发现,负一场积1分。

师:胜一场呢?

生:2分(有的用算术法、有的用方程各抒己见)

师:若一个队胜a场,负多少场,又怎样积分?

生:负(14-a)场,胜场积分2a,负场积分14-a,总积分a+14.

师:问题②如何解决?

学生通过计算各队胜、负总分得出结论:不等。

师:你能用方程说明上述结论么?

生:老师,没有等量关系。

师:欸,就是,已知里没说,是不是不能用方程解决了?谁又没有大胆设想?

生:老师,能不能试着让它们相等?

师:伟大的发明都是在尝试中进行的,试试?

生:如果设一个队胜了x场,则负(14-x)场,让胜场总积分等负场总积分,方程为:2x=14-x解得x=4/3(学生掌声鼓励)

师:x表示什么?可以是分数么?由此你的出什么结论?

生:x表示胜得场数,应该是一个整数,所以,x=4/3不符合实际意义,因此没有哪个队的胜场总积分等于负场总积分。

师:此问题说明,利用方程不仅求出具体数值,而且还可以推理判断,是否存在某种数量关系;还说明用方程解决实际问题时,不仅要注意方程解得是否正确,还要检验方程的解是否符合问题的实际意义。

拓展

如果删去积分榜的最后一行,你还能用式子表示总积分与胜、负场数之间的数量关系吗?

师:我们可以从积分榜中积分不相同的两行数据求的胜负一场各得几分,如:一、三行。

教师引导学生设未知数,列方程。学生试说。

生:设胜一场积x分,则前进队胜场积分10x,负场积分(24-10x)分,它负了4场,所以负一场积分为(24-10x)/4,同理从第三行得到负一场积分为(23-9x)/5,从而列方程为(24-10x)/4=(23-9x)/5。解得x=2,当x=2时,(24-10x)/4=1。仍然可得负一场积1分,胜一场积2分。

三、巩固练习

已知某山区的平均气温与该山的海拔高度的关系见表:

海拔高度(单位:m)

100

200

300

400

平均气温(单位:℃)

22

21.5

21

20.5

20

若某种植物适宜生长在18℃20℃(包括18℃20℃)的山区,请问该植物适宜种在海拔为多少米的山区?

学生分析题意,思考,在练习本上完成,然后同桌小议,代表发言,教师点拨。

四、课堂小结:

让几个学生谈自己的收获,再让一个学生全面总结。

五、布置作业:

课本108页8、9题。

六、教学反思

本节课主要是借球赛积分表问题传授数学知识的应用。在前面已经讨论过由实际问题抽象出一元一次方程模型和解一元一次方程的基础上,本节进一步以探究的形式讨论如何用一元一次方程解决实际问题。要探究的问题比前几节的问题复杂些,问题情境与实际情况更接近。本节的重点是建立实际问题的方程模型。通过探究活动,进一步体验一元一次方程与实际的密切联系,加强数学建模思想,培养运用一元一次方程分析和解决问题的能力。

由于本节问题的背景和表达都比较贴近实际,其中的有些数量关系比较隐蔽,所以在探究过程中正确建立方程是难点,教师要恰当的引导,让学生弄清问题背景,分析清楚有关数量关系,找出可作为方程依据的主要相等关系,但教师不要代替学生的思考。

人教版一元二次方程教案 篇3

一、教学目标

【知识与技能】

理解并掌握一元二次方程求根公式的推导过程,能正确、熟练地运用公式法解一元二次方程。

【过程与方法】

经历探究求根公式的过程,发展合情推理能力,提高运算能力并养成良好的运算习惯。

【情感、态度与价值观】

通过公式法解一元二次方程,感受解法的多样性,在学习活动中获取成功的体验。

二、教学重难点

【教学重点】

用公式法解一元二次方程。

【教学难点】

一元二次方程求根公式的推导。

三、教学过程

(一)引入新课

复习回顾:用配方法解一元二次方程。

配方,得

(四)小结作业

小结:引导学生做知识总结:本节课学习了什么叫公式法,怎样运用公式法解一元二次方程。如何判断一个方程是否有实数根?

作业:课后练习题,试着用多种方法解答。

人教版一元二次方程教案 篇4

一、教材分析

(一)教材的地位和作用

“一元二次方程的解法”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程、因式分解、数的开方、以及前三种因式分解法、直接开方法、配方法解一元二次方程的基础上,掌握用求根公式解一元二次方程,是配方法和开平方两个知识的综合运用和升华。通过本节课的教学使学生明确配方法是解方程的通法,同时会根据题目选择合适的方法解一元二次方程。一元二次方程的解法也是今后学习二次函数和一元二次不等式的基础。

(二)教学目标

知识技能方面:理解一元二次方程求根公式的推导过程,会用公式法解一元二次方程。

数学思考方面:通过求根公式的推导过程进一步使学生熟练掌握配方法,培养学生数学推理的严密性和逻辑性以及由特殊到一般的数学思想。

解决问题方面:结合用公式法解一元二次方程的练习,培养学生快速准确的运算能力和运用公式解决实际问题的能力。

情感态度方面:让学生体验到所有的方程都可以用公式法解决,感受到公式的对称美、简洁美,渗透分类的思想;公式的引入培养学生寻求简便方法的探索精神和创新意识。

(三)教学重、难点

重点:掌握用公式法解一元二次方程的一般步骤;会熟练用公式法解一元二次方程。

难点:理解求根公式的.推导过程和判别式

二、教学法分析

教法:本节课采用引导发现式的自主探究式与交流讨论结合的方法;在教学中由旧知识引导探究一般化问题的形式展开,利用学生已有的知识、多交流、主动参与到教学活动中来。

学法:让学生学会善于观察、分析讨论和分类归纳的方法,提出问题后,鼓励学生通过分析、探索、尝试解决问题的方法,铜锁亲自尝试,使学生的思维能力得到培养。

三、过程分析

本节课的教学设计成以下六个环节:复习导入——呈现问题——例题讲解——巩固练习课时小结——布置作业。

1、复习引入:

这节课,我首先从旧知

问题(1)用配方法解方程2x28x90的练习引入,

问题(2)总结配方法的一般步骤(化一般方程——二次项系数为1——配方使左边为完全平方式——两边开方——求解)。

设计意图:让学生巩固昨天的知识,进一步熟练钥匙并为今天做学的内容解一般形式的一元二次方程做好铺垫,达到“温故而知新”。

2、问题呈现:

你能用配方法解一般形式的一元二次方程吗?

此处由一个特殊的旧知引导学生推导出一般的结果,希望学生学会由特殊性到一般化的思想。为降低b2b24ac推导的难度,化简、移项、配方、变形由我和学生一起探究完成,到(x这步时,提出 )

问题:①此时可以直接开平方吗?

②等号右边的值需要满足什么条件?为什么?

③等号右边的值只跟哪个式子有关?

设计意图:师生共同完成前四步,这样与利于减轻学生的思维负担,便于将主要精力放在后边公式的推导上。通过小组的讨论有利于发挥学生的互帮互助,借助小组的交流完善答案,关键让学生会对掌握b24ac与方程有无实数根的关系,这里分类思想也是今后常用的一种数学思想,b24ac进行讨论,

应加以强化。

最终总结出:

当b24ac<0时,原方程无实数解。

当b24ac≥0时,原方程有实数解,

再进一步谈论:b24ac=0与b24ac>0时,两个解区别?

(b24ac=0时,两个相等的实数解,b24ac>0时,两个不等的实数解)

由此可知,方程有解还是无解是由b24ac决定,即b24ac是方程解的判别式。

同时,方程的解是可以将a、b、c

的值带入公式x根公式”,利用它解一元二次方程叫做公式法。

3、例题讲解

例4:用公式法解下列方程

总结步骤:

1、把方程公成一般形式,并写出a,b,c的值。

2、求出b24ac的值

4、写出方程的解:x1= ,x2=

设计意图:规范解题格式,让学生体会数学课中的严谨的逻辑推理;体验并掌握公式法解一元二次方程的步骤,从中让学生领会到由特殊到一般,一般到特殊的辩证思想。

4、巩固练习

解下列一元二次方程:

①x2x60

②4x2x90

③x2100

设计意图:

(1)熟悉公式法,强化解题格式,

(2)及时发现错误及时解决。

例5:解方程:x(x1)(x2)

化简得12212x3x40 2

强调:

①当方程不是一般形式时,应先化成一般形式,再运用求根公式。

②你还能用其他方法解本例方程吗?

设计意图:明确一元二次方程解题方法的多样性,让学生在你观察分析题目后灵活合理的选择解题方法,培养学生的多样化思维,提高解题能力和解题的速度。

5、课时小结

(1)学生作知识总结:本节课通过配方法求解一般形式的一元二次方程的根,推出了一元二次方程的求根公式,并按照公式法的步骤解一元二次方程。

(2)我扩展:(方法归纳)求根公式是一元二次方程的专用公式,只有在确定方程是一元二次方程时才能使用,是常用而重要的一元二次方程的万能求根公式。

6、布置作业:面向全体学生,注重个体差异,加强作业的针对性,分层布置作业,适应新课标,让不同的学生各其所长,因材施教的要求,提高他们的学习的兴趣和自信心。

四、板书设计

本节课内容较为单一,通过“层层设疑”、“复习回顾”等环节促进学生的思考和探究。

通过比较合理的问题设计巩固练习、小组讨论等形式给学生提供了充分的展示机会,强化了学生的运算能力,有利于学生掌握基本技能。

人教版一元二次方程教案 篇5

【教学目标】

1、会根据具体问题中的数量关系列一元二次方程并求解。

2、能根据问题的实际意义,检验所得结果是否合理。

3、进一步掌握列方程解应用题的步骤和关键。

【教学过程】

一、复习回顾:

1、解一元二次方程都有哪些方法?(学生口答)

2、列一元一次方程解应用题有哪些步骤?(学生口答)

①审题;

②设未知数;

③找相等关系;

④列方程;

⑤解方程;

⑥答。

二、问题探究:

(一)思考课本探究1回答下列问题:

(1)设每轮传染中平均一个人传染x个人,那么患流感的这个人在第一轮传染中传染了 人;第一轮传染后,共有 人患了流感。

(2)在第二轮传染中,传染源是 人,这些人中每一个人又传染了 人,那么第二轮传染了 人,第二轮传染后,共有 人患流感。

(3)根据等量关系列方程并求解。为什么要舍去一解?

(4)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?

(5)完成教材思考:如果按照这样的传播速度,三轮传染后,有多少人患流感?

(学生在交流中解决问题,教师深入小组讨论,对疑惑较多的问题要点拨;前两个问是解题的关键,可作适当点拨。最后思考题,可让学生试试独立完成。教给学生如何审题,分析题。)

三、例题学习:

例1:青山村种的水稻2001年平均每公顷产7200kg,2003年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率。 (学生独立思考、练习。一学生板书,教师巡视后讲解)

例2:(教材探究2)两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?

(给学生分组求解,然后比较哪个小组做的有快又准。最后比较哪种药品成本平均下降率较大。)

四、课堂练习:(学生独立思考、练习。一学生板书,教师巡视后讲解)

1、某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?

2、有一人患了流感,经过两轮传染后共有121人患了流感,毎轮传染中平均一个人传染了几个人?

五、总结反思:(由学生自己完成,教师作适当补充)

1、列一元二次方程解应用题的步骤:审、设、找、列、解、答。最后要检验根是否符合实际意义。

2、探究2是平均增长率或降低率问题。若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有: (常见n=2)

教后记:

本节课是一元二次方程的应用第一课时。通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,具体我以为有以下几个特点:

一、通过学生口答,复习了列方程解应用题的一般步骤及解一元二次方程的'方法,为学习本节知识打好了基础。

二、问题探究通过问题串让学生解决的问题由浅入深,由易到难,也让学生解决问题的能力逐级上升,这样学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流、相互学习,共同提高。

三、本节课第一个例题,是增长率问题中的一个典型例题,我在引导学生解决此题之后,进一步总结了列方程解应用题的步骤。不仅关注结果更关注过程,让学生养成良好的解题习惯。

四、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。

五、课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励的教学手段,帮助学生形成积极主动求知态度,课堂收效大。

六、需改进的方面:

1、由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。例如例2有多种解法,课后一些学生与老师交流,但课上没有得到充分的展示、

2、只考虑扑捉学生的思维亮点,一学生列错了方程,我没有给予及时纠正。导致使一些同学陷入误区、

3、下课后很多学生和我沟通课上一学生的错误问题,但他们上课并不敢提出,有点却场,所以平时要培养学生敢想敢说敢于发表个人的不同见解的学风。

人教版一元二次方程教案 篇6

教学内容:

本节内容是:

人教版义务教育课程标准实验教科书数学九年级上册

第22章第2节第1课时。

一、教学目标

(一)知识目标

1、理解求解一元二次方程的实质。

2、掌握解一元二次方程的配方法。

(二)能力目标

1、体会数学的转化思想。

2、能根据配方法解一元二次方程的一般步骤解一元二次方程。

(三)情感态度及价值观

通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。

二、教学重点

配方法解一元二次方程的一般步骤

三、教学难点

具体用配方法的一般步骤解一元二次方程。

四、知识考点

运用配方法解一元二次方程。

五、教学过程

(一)复习引入

1、复习:

解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

2、引入:

二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。

(二)新课探究

通过实际问题的解答,引出我们所要学习的知识点。通过问题吸引学生的注

意力,引发学生思考。

问题1:

一桶某种油漆可刷的面积为1500d㎡李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?

问题1重在引出用直接开平方法解一元二次方程。这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,

具体解题步骤:2解:设正方体的棱长为x dm,则一个正方体的表面积为6xd㎡

列出方程:60x2=1500

x2=25

x=±5

因为x为棱长不能为负值,所以x=5

即:正方体的棱长为5dm。

1、用直接开平方法解一元二次方程

(1)定义:运用平方根的定义直接开方求出一元二次方程解。

(2)备注:用直接开平方法解一元二次方程,实质是把一个一元二次方程“降次”,转化为两个一元二次方程来求方程的根。

问题2:

要使一块矩形场地的长比宽多6cm,并且面积为16㎡,场地的长和宽应各为多少?

问题2重在引出用配方法解一元二次方程。而问题2应该大部分同学都不会,所以由我来具体的讲解。主要通过与完全平方式对比逐步解这个方程。再由这个方程的求解过程师生共同总结出配方法解一元二次方程的一般步骤。让学生加深映像。

具体解题步骤:

解:设场地宽x m,长(x +6)m。

列方程: x(x +6)=16

即: x2+6x-16=0

x2+6x=16

x2+6x+9=16+9

(1)有实根(2)有两正根(3)一正一负

人教版一元二次方程教案 篇7

教学目标:

知识与技能目标:

经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。

过程与方法目标:

经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型;在探索过程中培养和发展学生学习数学的`主动性,提高数学的应用能力。

情感态度与价值观目标:

培养学生主动参与、合作交流的意识;经历独立克服困难和运用知识解决问题的成功体验,提高学生学习数学的信心。

教学重点:

理解一元二次方程的概念及其形式。

教学难点:

一元二次方程概念的探索

教学过程

一、情境引入

今天我们学习一元二次方程,温故而知新,我们都学过什么方程?(一元一次方程,分式方程,方程组)同桌两人说说学过这些方程的定义都是什么。你觉得学过这些方程难吗?只要你拿出你的学习热情来,就会感觉这节课的内容,也很简单。请你打开课本39页,从39页到40页议一议以上的内容,希望你准确而又迅速的在课本上列出方程,不用求解。列出方程后组内对一下答案,如有错误,出错的原因。(3’)

二、探索新知

列方程正确率百分之百的请举手。祝贺你们,没举手的同学加油!(列对的同学多就问,否则问现在会列这些方程的请举手)

请你将上述三个方程,化简成等号右边等于0的形式。完成后组内对一下答案,先完成的小组把你们的成果写在黑板上,其余组跟黑板上的答案对一下,有不同意见的把你们组的答案也写上去。(黑板上的答案对吗?如有没约分的,问哪个更好?)

观察、思考刚才这3个方程2x2-13x+11=0,x2-8x-20=0,x2+12x-15=0,以及又加入的这两个方程x2+3x=0,4x2-5=0是一元一次方程吗?你猜这些方程叫什么方程?对,这样的方程就是我们今天学习的一元二次方程。

请大家先思考然后小组讨论导学案中探究一中的问题2到6,组长找好本题发言人,最后全班交流你们组对问题5和6的看法。

2、以上方程与一元一次方程有什么相同与不同之处?

3、你能说说什么样的方程是一元二次方程吗?

4、如果我们借助字母系数来表示,那么以上方程能都化成一个方程--------------------------,用字母表示系数时,要注意什么吗?

5、你们组归纳的一元二次方程的概念与课本40页的定义有区别吗?谁的更好?好在哪?

6、你认为一元二次方程的概念中重点要强调的是什么?为什么?

请3组同学交流一下你们讨论的问题5、6的结果。老师根据学生的回答,有针对性的提出为什么这样想?你的理由是什么?以强调a≠0。并板书(1)含一个未知数(2)2次(3)整式方程,一般形式ax2+bx+c=0(a、b、c、为常数a≠0)有没有要补充或者要发表不同看法的小组?

请你抢答问题7。

7、判断下列方程是不是一元二次方程,若不是请说明理由。

同桌两人能举出几个一元二次方程的例子吗?

探索二

先自学课本40最后一段话,然后同桌两人说出黑板上3个方程的二次项、二次项系数、一次项、一次项系数、常数项。

找一元二次方程各项及其各项系数时,需要注意什么吗?(先要是一般形式,系数带符号)请你完成探究二中问题1,请2组、4组选派一名同学分别上黑板(10、(2)两题。完成后对照课本41页例1自己检查对错,有困难的同学找组长和我。

1、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

(1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)

问题3做对了的同学请举手?祝贺你们。出错的同学能不能把你的宝贵经验告诉我们,我们下次也好注意一下,别再出错?请你说说,谢谢你对我们的提醒。

三、巩固练习

请看问题2,

2、已知关于x的方程(1)k为何值时,此方程为一元二次方程?(2)k为何值时,此方程为一元一次方程?谁能回答?为什么这样想?

四、课堂:

先小组内说出本节课你的收获,然后全班交流你们组的收获。大家看看哪个小组的收获多。

五、自我检测:

看看我们的收获是不是真的

硕果累累,请你完成自我检测给你5分钟时间,做完的给我和组长检查。老师和小组长当堂批改

1、三个连续整数两两相乘,所得积的和为242,这三个数分别是多少?

根据题意,列出方程为------------------------------------。

2.把下列方程化为一元二次方程的形式,并写出它的二次项系数、常数项:

方程

一般形式

二次项系数

常数项

3x2=5x-1

(x+2)(x-1)=6

3、关于x的方程(k-2)x2+2(k+9)x+2k-1=0

(1)k为何值时,是一元二次方程?k--------------是一元二次方程。

(2)k为何值时,是一元一次方程?k-------------是一元一次方程。

六、小组

请小组长本小组今天大家的表现。

七、作业

课本42页1(2),2(1)(2)(3)

能力挑战:

已知关于x的方程(k2-1)x2+(k+1)x-2=0

(1)k为何值时,此方程为一元二次方程?并写出该一元二次方程的二次项系数、一次项系数、常数项。(2)k为何值时,此方程为一元一次方程?

板书设计:一元二次方程

(1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)

2x2-13x+11=0(1)含一个未知数(2)2次

x2-8x-20=0(3)整式方程

x2+12x-15=0一般形式ax2+bx+c=0(a、b、c、为常数a≠0)

二次项一次项常数项

二次项系数一次项系数常数项系数

参加区优质课评比反思:

这次有幸参加我区优质课评比,感受颇多。

一、对三分之一课堂模式有了更深的理解。数学课的三分之一模式不是简单的把课堂分成三大块,也不是自主探索、小组合作、教师引导,一定是严格的都是15分钟,这要根据课程的内容,灵活的把握。我讲的《一元二次方程》这一节中,简单问题我就让大家自主探索,对于难度大的问题,自主探索后先小组合作,最后师生一起进行归纳。

二、台上一分钟,台下十年功。通过参加这次活动,我想,我在今后的课堂教学中,就要用优质课的进行教学,如果平时的授课方式和优质课的方式差别很大的话,虽然是经过加工了的课,但最后一定会带有很多平时上课的影子,很多不规范的方面还是难以改正的。

三、集体的智慧很重要。一个人的力量是有限的,但集体的力量是无限的。我很感谢我们数学组的各位老师对我的大力支持,他们一遍一遍的给提出修改建议,一次一次的跟我去听课,尤其是李老师、战老师、林老师,她们给了我教学理念上的很多建议,让我的教学理念有了很大的提升。

人教版一元二次方程教案 篇8

教学内容

一元二次方程概念及一元二次方程一般式及有关概念.

教学目标

了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.

1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.

2.一元二次方程的一般形式及其有关概念.

3.解决一些概念性的题目.

4.态度、情感、价值观

4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.

重难点关键

1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.

2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.

教学过程

一、复习引入

学生活动:列方程.

问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”

大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?

如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.

整理、化简,得:__________.

问题(2)如图,如果 ,那么点C叫做线段AB的黄金分割点.

如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.

整理,得:________.

老师点评并分析如何建立一元二次方程的数学模型,并整理.

二、探索新知

学生活动:请口答下面问题.

(1)上面三个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们最高次数是几次?

(3)有等号吗?或与以前多项式一样只有式子?

老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.

因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.

解:去括号,得:

40-16x-10x+4x2=18

移项,得:4x2-26x+22=0

其中二次项系数为4,一次项系数为-26,常数项为22.

例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.

解:去括号,得:

x2+2x+1+x2-4=1

移项,合并得:2x2+2x-4=0

其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.

三、巩固练习

教材P32 练习1、2

四、应用拓展

例3.求证:关于x的方程(2-8+17)x2+2x+1=0,不论取何值,该方程都是一元二次方程.

分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可.

证明:2-8+17=(-4)2+1

∵(-4)2≥0

∴(-4)2+1>0,即(-4)2+1≠0

∴不论取何值,该方程都是一元二次方程.

五、归纳小结(学生总结,老师点评)

本节课要掌握:

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.

六、布置作业

人教版一元二次方程教案 篇9

一、复习目标:

1、能说出一元二次方程及其相关概念,;

2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。

3、能灵活应用一元二次方程的知识解决相关问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力。

二、复习重难点:

重点:一元二次方程的解法和应用.

难点:应用一元二次方程解决实际问题的方法.

三、知识回顾:

1、一元二次方程的定义:

2、一元二次方程的常用解法有:

配方法的一般过程是怎样的?

3、一元二次方程在生活中有哪些应用?请举例说明。

4、利用方程解决实际问题的关键是。

在解决实际问题的过程中,怎样判断求得的结果是否合理?请举例说明。

四、例题解析:

例1、填空

1、当m时,关于x的方程(m-1)+5+mx=0是一元二次方程.

2、方程(m2-1)x2+(m-1)x+1=0,当m时,是一元二次方程;当m时,是一元一次方程.

3、将一元二次方程x2-2x-2=0化成(x+a)2=b的形式是;此方程的根是.

4、用配方法解方程x2+8x+9=0时,应将方程变形为( )

A.(x+4)2=7B.(x+4)2=-9

C.(x+4)2=25D.(x+4)2=-7

学习内容学习随记

例2、解下列一元二次方程

(1)4x2-16x+15=0(用配方法解)(2)9-x2=2x2-6x(用分解因式法解)

(3)(x+1)(2-x)=1(选择适当的方法解)

例3、1、新竹文具店以16元/支的价格购进一批钢笔,根据市场调查,如果以20元/支的价格销售,每月可以售出200支;而这种钢笔的售价每上涨1元就少卖10支.现在商店店主希望销售该种钢笔月利润为1350元,则该种钢笔该如何涨价?此时店主该进货多少?

2、如图,在Rt△ACB中,∠C=90°,AC=6m,BC=8m,点P、Q同时由A、B两点出发分别沿AC,BC方向向点C匀速运动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半?

教案模板相关文章

更多>